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Abstract

UAV technology has seen rapid evolution throughout the years, transforming itself into an
invaluable asset for applications such as search and rescue operations, inspections, mapping and
agriculture. One major challenge in these applications is the heavy reliance on GPS for a drone
to effectively localize itself for UA operations. GPS is susceptible to jamming, and may not
function properly in remote and non urbanised areas, where GPS signals may be weak or
completely unavailable. This paper aims to investigate the novel approach of geo-referencing
satellite imagery using feature matching algorithms to enhance the localization capabilities of
drones in such environments, focusing on overcoming the limitations of traditional
satellite-based navigation systems. By examining algorithms like SuperPoint and SuperGlue, we
aim to assess the accuracy, reliability and efficiency of satellite imagery feature matching drone
localization, especially in the context of Singapore, in situations when GPS/GNSS is
unavailable. Our findings suggest that while these intricate algorithms are capable of fabricating
apt results under highly specific conditions, it faces several limitations by numerous factors such
as zoom level, resolution of query and reference images, and others. This paper aims to
scrutinize a UAV localization algorithm to see if it is apt for real-world solutions, in the context
of Singapore.

Introduction

This project expands on a previous research paper “Vision-based GNSS-Free Localization for
UAVs in the Wild” [1], which details the increasing need for localizing these aerial systems in
non-urban environments. The algorithm implemented is based on matching salient features of
RGB photographs captured by the drone camera to features of sections of a pre-built map
consisting of georeferenced open-source satellite images. Doing so, the algorithm is able to
output a prediction of the drone’s localization data as a set of numbers, longitude and latitude, so
as to pinpoint the location of the drone. In order to compute geographical coordinates, the
algorithm uses a fairly simple approach. It starts by rotating the drone photograph using the
image metadata providing the orientation of the UAV and the camera gimbal to match the
heading of the map sections (always oriented northwards). The rotation is absolutely necessary
because it improves the number of features which can be matched for a pair of images. We
intend to test out this localization algorithm with our own provided data to measure the extent of
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its functionality, which will be able to provide information to future developers on possible
improvements that can be made to the algorithm.

Research Question

To what extent is the Vision-based GNSS-free localization Algorithm effective? The
effectiveness of a vision-based GNSS-free localization algorithm is largely determined by its
ability to accurately estimate a drone’s position and orientation in remote or GPS-denied terrains
such as forests or mountainous regions, traditional GNSS-based systems often fail due to signal
blockage or interference. The algorithm’s effectiveness depends on factors such as the quality of
visual data, the drone speed, the complexity of the terrain and the robustness of the algorithm in
handling lighting changes and dynamic environments.

Hypothesis

Our hypothesis is that the localization algorithm was very sensitive to any discrepancies to the
nature of the “query” image and the satellite image provided, such as the resolution of the image
and the pixels of the feature matching. As an analogy, we are predicting that the localization
algorithm will be affected given the geo-referenced satellite images are of different
magnification and resolution.

Methodology

The Methodology for evaluating feature matching algorithms in wilderness UAV localization
encompasses three main phases: dataset collection, algorithm implementation, and performance
evaluation. Firstly, we studied the existing literature paper and understood the concepts. This
involves an extensive review of existing literature on GNSS-free drone localization methods.
Key studies are identified to analyze the current state of the field, including the various
algorithms and technologies used for localization in wild terrains. The review explores
challenges of GNSS localizations and identifies gaps in the existing research.

The query image and numerous sets of reference satellite maps were collected. Reference
satellite maps were taken from Google Maps. Due to logistical and time constraints, only 1 query
image (taken by UAV) was available. The query image was fed into the feature matching
algorithm and tested against different sets of satellite maps (of varying quality and condition),
where results such as predicted location and amount of feature matches were collected.

We conducted 4 separate tests to examine the algorithm’s full capability and limitations. The first
test was to vary the zoom level (measured in m/pix) of the reference satellite map, to test the
algorithm’s sensitivity to the reference maps’ quality and resolution, etc. This test was conducted
with a single query image against a single map image, to test the algorithm’s ability to identify
feature matches and predict the GPS coordinates of the query image.



The second test was multi-map test. The reference map was a set of 5 images, where the satellite
map was split into 5, all of which had a standard zoom level. This was to test the program’s
ability to scan through a larger reference map, and identify which image had the most
appropriate feature matches among a pool of numerous images.

The third test was also a multi-map test, but all the images within the reference map set had
similar features as the query image, to assess the algorithm’s ability to correctly identify and
feature match the map image that matches the query image amongst a pool of similar images, in
order to predict the location of the query image. This test was to assess the algorithm’s accuracy
when dealing in multi image map sets, where some images are similar.

The last test was a “split test”, where the correct map image was split into 4, to assess the
algorithm’s ability to identify the correct matching image(s) to the query image when there is
more than one correct image.

1. Dataset Collection
For the query image, we used an existing aerial image taken by a UAV that was available.
Variability in Conditions:
Equipment: DJT Air 2S
Camera Resolution: 5280x2970

When fed into the algorithm for tests, the image was rotated such that the image faced north, and
was downscaled to 337x600px.

The reference maps were taken from Google Maps. Zoom level of the maps (measured in m/pix)
was standardised within each set of maps, and vary between different sets (zoom level test). For
the multi tests and split tests, zoom level was standardised to 0.715m/pix. The top left corner and
bottom right corner of each map image has their coordinates (lat, long) recorded and inputted in
the program via a csv file, such that the algorithm is able to predict the coordinates of the query
image when it matches with one of the map images.

2. Feature Matching algorithms
Classical Algorithms that were introduced to us included SIFT, SURF, ORB. Deep

Learning-Based algorithms included SuperGlue, SuperPoint. The Algorithm was evaluated based
on feature extraction, descriptor matching and computational efficiency.

The program used was “Vision based GNSS-free localization of UAVS in the wild” by
TerboucheHacene, an extension of the original implementation by Wildnav.

(https://github.com/TerboucheHacene/visual localization)



The program was installed via Powershell in Visual Studio Code terminal, and was mainly
accessed and ran through VSC.

Trying out the Software with our own images
Hardware:

e (PU: Intel 19-13900H.
e GPU: NVIDIA RTX 3080M.
e RAM: 32 GB.

Software:

OpenCV (v4.5) for classical algorithms.

PyTorch (v1.12) for deep learning models.

ROS (Robot Operating System) for UAV localization integration.
Visual Studio Code.

3. _Performance Evaluation
To evaluate the accuracy and reliability of our localization results, we considered the following
metrics that potentially determine the accuracy of the algorithm. Firstly, Error in Position — we
measured the distance between the ground truth positions and the estimated positions from the
feature matching algorithm and calculated the magnitude of the error, to give us an indication of
the localization accuracy. Secondly, we conducted Error in Orientation, we assessed if feature
matching accuracy would be affected by orientation of the query image. Then, we evaluated the
consistency of feature matching and localization over time — consistent feature matching across
a sequence of images indicates a reliable localization process.

Metrics and Benchmark

To evaluate the impact of zoom levels (zoom level test) on feature matching precision, we
introduced a controlled experiment where images were scaled to simulate different zoom levels.
Precision: True positive matches as identified by ground truth homographics. We calculated the
ratio as Error Magnitude against Zoom Level. Defined as the deviation in feature match locations
between the scaled image and the baseline image. The average error magnitude was computed.
The number of matched features that remained consistent across zoom levels was calculated as a
percentage of the total detected features in the baseline image. A graph was created to display the
relationship between zoom levels and error magnitude. For the second to fourth tests, we
determined whether the algorithm was able to accurately identify the corresponding satellite map
and feature match, and to what extent was feature matching done.



Literature Review

The use of UAVs in wilderness environments, where GPS signals are unreliable, has spurred the
development of advanced localization techniques. Feature matching is a central approach in
visual-based localization — a key area in computer vision, pattern recognition and machine
learning. Key points are detected in images matched across multiple views to estimate the UAVs
position and orientation. Feature matching typically involves three stages — Feature extraction,
Feature Description and Feature matching. This section reviews the existing literature on the
challenges of localization in such environments, focusing on the role of feature matching
algorithms like SuperPoint and SuperGlue. The traditional method of Feature Matching is the
SIFT (Scale-Invariant Feature Transform) [3] and ORB (Oriented FAST and Rotated BRIEF) [4]
algorithm, which makes use of Scale-space peak selection to locate keypoints. However, these
algorithms often struggle in environments with low-texture areas or poor feature contrast, which
1s common in some settings like rocky landscapes or forests. Like SIFT, SuperPoint is a deep
learning-based feature detection and description method introduced by DeTone et al. (2018) [5]
used for feature extraction and feature description. Unlike traditional algorithms, SuperPoint is a
fully-convolutional neural network (CNN) architecture which operates on a full-sized image and
extracts and describes key points directly from the image. In their experimental results, DeTone
et al. demonstrated that SuperPoint outperforms traditional methods like SIFT and ORB,
especially in areas with low texture, which are common in wilderness environments. SuperGlue,
introduced by Sarlin et al. (2020) [6], 1s a deep learning-based method for feature matching that
builds upon SuperPoint’s feature extraction. Sarlin et al. showed that SuperGlue significantly
improves matching accuracy and robustness, outperforming previous methods like SIFT and
MIND (a traditional matching algorithm) in both real and synthetic environments. Algorithms
like SuperPoint and SuperGlue represent significant advances in feature extraction and matching.
Despite their strengths, challenges like low-texture areas, occlusions, and environmental
dynamics remain.

Results
ZOOM LEVEL TEST
Zoom level for the reference map was measured in m/pixel. The images below show the query

image (left side of each image) feature-matched to the satellite image of varying zoom level
(right side of each image).



e ; 2s%2000

Top left: Figure 1(a) (Zoom: 0.301m/pix); lop right: Figure 1(b) (Zoom: 0.503m/pix); Bottom
left: Figure 1(c) (Zoom: 0.990m/pix); Top left: Figure 1(d) (Zoom: 1.18m/pix)

Figure 1

Left: Figure 2(a) (Zoom: 1.17m/pix); Right: Figure 2(b) (Zoom: 1.64m/pix);

Figure 2
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Left: Figure 3(a) (Zoom: 1.39m/pix); Right: Figure 3(b) (Zoom: 1.66m/pix);
Figure 3

For maps beyond the zoom level of 1.66m/pix, the algorithm was unable to find a proper image
match and failed to deliver an output. The maps we tried that were beyond 1.66m/pix zoom level
are below.




MULTT IMAGE TEST

The following set of 5 images was the map set used for the multi image test. All images had a
standardised zoom level of 0.715m/pix.

The output of the aforementioned test is seen in Figure 5(b). The algorithm managed to identify
the correct image out of the 5 and feature map it rather extensively.
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Figure 5(b)



MULTIT IMAGE WITH SIMIT AR FEATURES TEST

The following set of 5 images was the map set used for the multi image with similar features test.
All images had a standardised zoom level of 0.715m/pix.
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Figure 6(a)

The output of the aforementioned test is seen in Figure 6(b). The algorithm managed to identify
the correct image out of the 5 and feature map it rather extensively.
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Figure 6(b)



SPLIT TEST

The first split test was conducted with the correct map image split into 2, and an extra irrelevant
image. The images used are below.

Figure 7(a)

The output of the aforementioned test is seen in Figure 7(b).
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Figure 7(b)



The second split test used the following images below, where the correct image was split into

four.
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Figure 8(b)



Analysis
Zoom level test

For all output images from the test, the predicted coordinates of the query image and the actual
ground truth coordinates were both generated. The magnitude of the error between the predicted
coordinates and the actual coordinates was measured for the zoom level test, and the data points
are plotted in Figure 9.
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Figure 9

Our hypothesis was that as zoom level increases, quality and resolution of the satellite map
decreases, and the magnitude of error increases. We expected an exponential increase in the error
magnitude. From Figure 9, it seems that our hypothesis was correct to a certain extent, but there
were anomalies at the zoom levels of 1.17-1.18m/pix, where error magnitude dipped down. This
was observed again between 1.64m/pix to 1.66m/pix, with a staggering fall in the error
magnitude. We believe these 2 data points to simply be outliers, and presumed that the algorithm
got lucky and managed to predict the coordinates of the query image rather accurately. There
may also be the possibility of human error when inputting lat,long coordinates for the map
images leading to such anomalies, but we were unable to confirm any errors. The general
increasing trend in error magnitude is still observed.

We conducted tests trying reference maps beyond 1.66m/pix zoom level, as seen in Figure 4, but
were unable to obtain any matches or output. We can reasonably assume that the algorithm stops
working past the zoom level of around 1.66m/pix-1.70m/pix.



Multi image test

When the program was fed with a set of 5 images that are dissimilar with one another (Figure
5(a)), the program was able to identify the correct image and feature match it, producing the
output shown in Figure 5(b). We can see that the program was not only able to identify the
correct map image, but also managed to feature match between the query image and map image
rather extensively.

Multi image with similar features test

When the program was fed with a set of 5 similar images (Figure 6(a)), where all images had
similar features, it was still able to identify the correct image and feature match it rather
extensively (Figure 6(b)). We can conclude that the program is pretty versatile, and is intelligent
enough to rely on numerous sources of feature matches (trees, bridge, roads) to identify the
correct image, and will not misidentify the images even when there are similar features

(track/field).

It’s possible that the orientation of the images played a big part in helping the algorithm identify
the correct image too.

Figure 10

As seen in Figure 10, when the query image had its orientation changed from facing north to
facing east, the algorithm was not able to feature match the query and reference images properly.
We can conclude that the program relies heavily on image orientation for feature matching,
which helped it to identify the correct image in this particular test.

Notably in the future, we could reuse the same set of images, but orient the similar features
(track/field) in the same direction as each other to see how the program handles it.



Split test

As seen in Figure 7(b) and 8(b), the program was able to feature match correctly, but only
partially, and failed to detect that there was more than one correct image in the reference map set.
Notably, the algorithm preferred the bottom right corner of the query image to feature match, and
would always match it to the corresponding bottom/bottom right area image in the reference map
set. Its plausible that as earlier mentioned, the program relied more heavily on the
roads/trees/bridge found in the bottom/bottom right area of the image for feature matching,
together with other features, hence explaining this observation.

Limitations and Future Work
These limitations stem from aspects of methodology, scope of testing, and the complexities of
real-world UAV localization tasks. Below are the key limitations of the report:

1. Logistical challenges
We faced many logistical challenges in this process. Firstly, we were lacking on Development
Laptops, which hindered our progress in generating data. We were not able to get our hands on
the drone model most preferred for taking footage of the query image. It also required personnel
with more specialized skills in robotics, computer vision and sensor fusion. Hence, it took us
some time to get used to the algorithm. This caused some data collection difficulties.

2. Short-term data collection
The tests presented in the report are based on a limited number of images. Furthermore, our
internship lasted only about 4 weeks, and with 2 weeks of understanding the algorithm, we only
had 2 weeks left for data collection. Longitudinal data over extended flight periods and
continuous localization testing are essential for assessing the consistency and robustness of

feature matching algorithms.

3. Lack of real-world conditioning
Real-world UAV missions typically span longer durations and testing for performance
degradation over time could not be included in this study. Hence, there was a lack of real-world
field validation with Ground truth GPS data for comparison. This report also assumes that the
environment remains mostly static between image captures, which is often not the case in
real-world UAV missions. While the algorithm handles feature matching well in controlled
settings, the presence of dynamic objects such as people, vehicles and animals in the
environment could introduce challenges that were not accounted for in the report. Once again,
we did not have enough understanding and logistical materials to conduct further research and
testing on further real-world scenarios. Hence, our report does not explore or consider the
difficulty of matching features in environments with significant movement or fast-changing
scenarios.

Future works/Studies



Hence, while this report provides an evaluation of the algorithm for UAV localization in the
environment, the limitations outlined above should be seriously considered when interpreting the
results. These are key challenges that were not comprehensively addressed. Future studies should
focus on extending the scope of testing to diverse environments, to a greater range of orientation,
position and zoom of the images. It should also include improving real-world processing
capabilities, such as considering detecting dynamic objects. This can be done by validating
results under dynamic, long-duration missions to provide a deeper understanding of how these
academic algorithms can be implemented in real-world scenarios and support UAV localization
in challenging, GPS-weak scenarios.

References

[1] Gurgu, M.-M., Pefia Queralta, J., & Westerlund, T. (n.d.). Vision-based GNSS-free
localization for UAVs in the wild. Turku Intelligent Embedded and Robotic Systems (TIERS)
Lab, University of Turku.

[2] ¢

[3]G. Lowe, D. (n.d.). Distinctive image features from scale-invariant keypoints. Distinctive
Image Features from Scale-Invariant Keypoints. https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
[4] Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. (n.d.). (PDF) Orb: An efficient
alternative to SIFT or surf. ORB: an efficient alternative to SIFT or SURF.
https://www.researchgate net/publication/221111151_ORB_an_efficient alternative to SIFT or
_SURF

[5] DeTone, D., Malisiewicz, T., & Rabinovich, A. (2018, April 19). SuperPoint: Self-supervised
interest point detection and description. arXiv.org. http://arxiv.org/abs/1712.07629

[6] Sarlin, P-E., DeTone, D., Malisiewicz, T., & Rabinovich, A. (2020, March 28). Superglue:
Learning feature matching with Graph Neural Networks. arXiv.org.
https://arxiv.org/abs/1911.11763



